Quadri-phase Shift Keying (QPSK)

Review: Binary Phase Shift Keying Modulation and Demodulation

Polar Non-return to Zero

Each transmitted signal corresponds to one binary digit

$$
s_{1}(t)-s_{2}(t)=2 A \cos \left(2 \pi f_{c}\right) t
$$

$$
\begin{array}{c|l}
\begin{array}{c}
\text { Threshold } \\
\text { Comparison } \\
\lambda^{*}=\frac{1}{2}\left(E_{1}-E_{2}\right)=0
\end{array} & \hat{b}_{i}=1 \text { if } z(\tau)>\lambda^{*} \\
& \hat{b}_{i}=0 \text { if } z(\tau)<\lambda^{*}
\end{array}
$$

Quadri-phase Shift Keying (QPSK): Signal Representation

$$
s_{Q P S K}(t)=\text { Binary PSK on } \cos \left(2 \pi f_{c} t\right)+\text { Binary PSK on } \sin \left(2 \pi f_{c} t\right)
$$

$$
\begin{aligned}
& " 11 " \quad s_{1}(t)=A \cos \left(2 \pi f_{c} t-\pi / 4\right)=+\frac{A}{\sqrt{2}} \cos \left(2 \pi f_{c} t\right)+\frac{A}{\sqrt{2}} \sin \left(2 \pi f_{c} t\right) \\
& " 10 " \quad s_{2}(t)=A \cos \left(2 \pi f_{c} t+\pi / 4\right)=+\frac{A}{\sqrt{2}} \cos \left(2 \pi f_{c} t\right)-\frac{A}{\sqrt{2}} \sin \left(2 \pi f_{c} t\right) \\
& \text { "0 0" } s_{3}(t)=A \cos \left(2 \pi f_{c} t+3 \pi / 4\right)=-\frac{A}{\sqrt{2}} \cos \left(2 \pi f_{c} t\right)-\frac{A}{\sqrt{2}} \sin \left(2 \pi f_{c} t\right) \\
& \text { "0 1" } s_{4}(t)=A \cos \left(2 \pi f_{c} t+5 \pi / 4\right)=-\frac{A}{\sqrt{2}} \cos \left(2 \pi f_{c} t\right)+\frac{A}{\sqrt{2}} \sin \left(2 \pi f_{c} t\right) \\
& s_{Q P S K}(t)=d_{I} \frac{A}{\sqrt{2}} \cos \left(2 \pi f_{c} t\right)+d_{Q} \frac{A}{\sqrt{2}} \sin \left(2 \pi f_{c} t\right) \\
& \begin{array}{ll}
d_{I}= \begin{cases}1 & \text { if } b_{2 i-1}=1 \\
\text { Odd } & \text { Even } d_{Q}=\left\{\begin{array}{cl}
1 & \text { if } b_{2 i}=1 \\
-1 & \text { if } b_{2 i-1}=0
\end{array}\right. \\
\text { if } b_{2 i}=0\end{cases}
\end{array} \\
& \text { bits } \\
& s_{Q P S K}(t)=A_{k} \cos \left(2 \pi f_{c} t\right)+B_{k} \sin \left(2 \pi f_{c} t\right)
\end{aligned}
$$

- In this type of modulation two binary digits are grouped together to form one message that phase modulates the carrier $A \cos \left(2 \pi f_{c} t\right)$.
- The transmitted signal assumes one of four possible phases $(+45,-45$, $+135,-135) A \cos \left(2 \pi f_{c} t+\theta_{i}\right)$
- A QPSK signal can be decomposed into a sum of two PSK signals; an inphase component and a quadrature component. The serial to parallel converter splits the incoming data sequence into two sequences that consist of the odd and even bits of the main sequence. The odd bit stream sequence modulates the in-phase carrier, while the even bit stream sequence modulates the quadrature carrier.

Quadri-phase Shift Keying (QPSK): Signal Representation

$$
\left.\left.\begin{array}{c}
s_{Q P S K}(t)=d_{I} \frac{A}{\sqrt{2}} \cos \left(2 \pi f_{c} t\right)+d_{Q} \frac{A}{\sqrt{2}} \sin \left(2 \pi f_{c} t\right) \\
d_{I}= \begin{cases}1 & \text { if } b_{2 i-1}=1 \\
-1 & \text { if } b_{2 i-1}=0\end{cases} \\
s_{Q P S K}(t)=A_{k} \cos \left(2 \pi f_{c} t\right)+B_{k} \sin \left(2 \pi f_{c} t\right) \\
-1 \\
\text { if } b_{2 i}=0
\end{array}\right\} \begin{array}{ll}
1 & \text { if } b_{2 i}=1
\end{array}\right\}
$$

- The serial to parallel converter splits the incoming data sequence into two sequences that consist of the odd $\left(A_{k}\right)$ and even bits $\left(B_{k}\right)$ of the main sequence. The odd bit stream sequence modulates the in-phase carrier, while the even bit stream sequence modulates the quadrature carrier.
- Both in phase and quadrature BPSK
- Modulator

Polar NRZ
 are transmitted over the same bandwidth.

Each transmitted signal corresponds to two binary digits

Quadri-phase Shift Keying (QPSK): Modulation

Quadri-phase Shift Keving (QPSK): Demodulation

- $z_{2}(\tau)=\int_{0}^{\tau}\left[s_{Q P S K}(t)+n(t)\right] \sin \left(2 \pi f_{c} t\right) d t$

- $z_{1}(\tau)=\int_{0}^{\tau}\left[A_{k} \cos \left(2 \pi f_{c} t\right)+B_{k} \sin \left(2 \pi f_{c} t\right)+n(t)\right] \cos \left(2 \pi f_{c} t\right) d t$
- $z_{2}(\tau)=\int_{0}^{\tau}\left[A_{k} \cos \left(2 \pi f_{c} t\right)+B_{k} \sin \left(2 \pi f_{c} t\right)+n(t)\right] \sin \left(2 \pi f_{c} t\right) d t$
- $z_{1}(\tau)=\frac{A_{k}}{2} \tau+N_{1}=\frac{A d_{I}}{2 \sqrt{2}} \tau+N_{1}$ signal component proportional to d_{i}
- $z_{2}(\tau)=\frac{B_{k}}{2} \tau+N_{2} ;=\frac{A d_{Q}}{2 \sqrt{2}} \tau+N_{2}$ signal component proportional to d_{q}
- The odd and even bits can be recovered using the decision rules
- $d_{I}=\left\{\begin{array}{r}1, z_{1}(\tau) \geq 0 \\ -1, \\ z_{1}(\tau)<0\end{array} \Rightarrow b_{2 i-1}=\left\{\begin{array}{ll}1, & d_{I}=1 \\ 0, & d_{I}=-1\end{array} ;\right.\right.$

Odd sequencє

$\cdot d_{Q}=\left\{\begin{array}{r}1, z_{2}(\tau) \geq 0 \\ -1, z_{2}(\tau)<0\end{array} \Rightarrow b_{2 i}=\left\{\begin{array}{ll}1, & d_{Q}=1 \\ 0, & d_{Q}=-1\end{array} ;\right.\right.$

QPSK: Probability of Error

- The symbol error probability is twice the bit error probability, and is given as (will also be derived in the next chapter when we consider M-ary PSK).

$$
P_{b}^{*}=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)=Q\left(\sqrt{\frac{E_{s}}{N_{0}}}\right)
$$

- This is the same as that for binary PSK, provided that both message bits have the same energy. The advantage of QPSK is that it is more bandwidth efficient than BPSK (can transmit twice the data rate within the same bandwidth)

QPSK: Power Spectral Density and Bandwidth

The power spectral density has the same shape as that for BPSK (the QPSK is the sum of , two BPSK signals one modulated on $\cos \left(2 \pi f_{c} t\right)$ and the other on $\sin \left(2 \pi f_{c} t\right)$. Remember that the symbol duration τ is twice
 the bit duration.

$$
s_{Q P S K}(t)=A_{k} \cos \left(2 \pi f_{c} t\right)+B_{k} \sin \left(2 \pi f_{c} t\right)
$$

$$
\begin{aligned}
& \quad R_{s}=\frac{1}{\tau}=\frac{R_{b}}{2} . \\
& \text { Here, } \tau=T_{s}=2 T_{b} \\
& \text { B.W }=\frac{2}{\tau}=\frac{2}{2 T_{b}}=R_{b}
\end{aligned}
$$

$s_{Q P S K}(t)=$ Binary PSK on $\cos \left(2 \pi f_{c} t\right)+$ Binary PSK on $\sin \left(2 \pi f_{c} t\right)$
Note that for QPSK, the data rate is R_{b} bits/sec and the B.W $=R_{b} \mathbf{H z}$ Which means we can transmit $2 R_{b}$ bits/sec and the B.W $=2 R_{b} \mathbf{H z}$ While for regular BPSK, when the data rate is R_{b} bits/sec the B.W $=2 R_{b} \mathbf{H z}$ Hence, QPSK is more bandwidth efficient than BPSK since in W Hz, we can transmit W bits/sec while in BPSK we can transmit half that value $\mathrm{W} / 2 \mathrm{bits} / \mathrm{sec}$ for the same probability of error.

